const std = @import("std"); const SDL = @import("sdl2"); const Bus = @import("Bus.zig"); const Scheduler = @import("scheduler.zig").Scheduler; const Arm7tdmi = @import("cpu.zig").Arm7tdmi; const FpsTracker = @import("util.zig").FpsTracker; const FilePaths = @import("util.zig").FilePaths; const Timer = std.time.Timer; const Thread = std.Thread; const Atomic = std.atomic.Atomic; const Allocator = std.mem.Allocator; // TODO: Move these to a TOML File const sync_audio = true; // Enable Audio Sync const sync_video: RunKind = .LimitedFPS; // Configure Video Sync pub const win_scale = 3; // 1x, 2x, 3x, etc. Window Scaling pub const cpu_logging = false; // Enable detailed CPU logging // 228 Lines which consist of 308 dots (which are 4 cycles long) const cycles_per_frame: u64 = 228 * (308 * 4); //280896 const clock_rate: u64 = 1 << 24; // 16.78MHz // TODO: Don't truncate this, be more accurate w/ timing // 59.6046447754ns (truncated to just 59ns) const clock_period: u64 = std.time.ns_per_s / clock_rate; const frame_period = (clock_period * cycles_per_frame); // 59.7275005696Hz pub const frame_rate = @intToFloat(f64, std.time.ns_per_s) / ((@intToFloat(f64, std.time.ns_per_s) / @intToFloat(f64, clock_rate)) * @intToFloat(f64, cycles_per_frame)); const log = std.log.scoped(.Emulation); const RunKind = enum { Unlimited, UnlimitedFPS, Limited, LimitedFPS, LimitedBusy, }; pub fn run(quit: *Atomic(bool), fps: *FpsTracker, sched: *Scheduler, cpu: *Arm7tdmi) void { if (sync_audio) log.info("Audio sync enabled", .{}); switch (sync_video) { .Unlimited => runUnsynchronized(quit, sched, cpu, null), .Limited => runSynchronized(quit, sched, cpu, null), .UnlimitedFPS => runUnsynchronized(quit, sched, cpu, fps), .LimitedFPS => runSynchronized(quit, sched, cpu, fps), .LimitedBusy => runBusyLoop(quit, sched, cpu), } } pub fn runFrame(sched: *Scheduler, cpu: *Arm7tdmi) void { const frame_end = sched.tick + cycles_per_frame; while (sched.tick < frame_end) { if (!cpu.stepDmaTransfer()) { if (cpu.isHalted()) { // Fast-forward to next Event sched.tick = sched.queue.peek().?.tick; } else { cpu.step(); } } if (sched.tick >= sched.nextTimestamp()) sched.handleEvent(cpu); } } fn syncToAudio(stream: *SDL.SDL_AudioStream, is_buffer_full: *bool) void { const sample_size = 2 * @sizeOf(u16); const max_buf_size: c_int = 0x400; // Determine whether the APU is busy right at this moment var still_full: bool = SDL.SDL_AudioStreamAvailable(stream) > sample_size * if (is_buffer_full.*) max_buf_size >> 1 else max_buf_size; defer is_buffer_full.* = still_full; // Update APU Busy status right before exiting scope // If Busy is false, there's no need to sync here if (!still_full) return; while (true) { still_full = SDL.SDL_AudioStreamAvailable(stream) > sample_size * max_buf_size >> 1; if (!sync_audio or !still_full) break; } } pub fn runUnsynchronized(quit: *Atomic(bool), sched: *Scheduler, cpu: *Arm7tdmi, fps: ?*FpsTracker) void { log.info("Emulation thread w/out video sync", .{}); if (fps) |tracker| { log.info("FPS Tracking Enabled", .{}); while (!quit.load(.SeqCst)) { runFrame(sched, cpu); syncToAudio(cpu.bus.apu.stream, &cpu.bus.apu.is_buffer_full); tracker.tick(); } } else { while (!quit.load(.SeqCst)) { runFrame(sched, cpu); syncToAudio(cpu.bus.apu.stream, &cpu.bus.apu.is_buffer_full); } } } pub fn runSynchronized(quit: *Atomic(bool), sched: *Scheduler, cpu: *Arm7tdmi, fps: ?*FpsTracker) void { log.info("Emulation thread w/ video sync", .{}); var timer = Timer.start() catch std.debug.panic("Failed to initialize std.timer.Timer", .{}); var wake_time: u64 = frame_period; if (fps) |tracker| { log.info("FPS Tracking Enabled", .{}); while (!quit.load(.SeqCst)) { runFrame(sched, cpu); const new_wake_time = blockOnVideo(&timer, wake_time); // Spin to make up the difference of OS scheduler innacuracies // If we happen to also be syncing to audio, we choose to spin on // the amount of time needed for audio to catch up rather than // our expected wake-up time syncToAudio(cpu.bus.apu.stream, &cpu.bus.apu.is_buffer_full); if (!sync_audio) spinLoop(&timer, wake_time); wake_time = new_wake_time; tracker.tick(); } } else { while (!quit.load(.SeqCst)) { runFrame(sched, cpu); const new_wake_time = blockOnVideo(&timer, wake_time); // see above comment syncToAudio(cpu.bus.apu.stream, &cpu.bus.apu.is_buffer_full); if (!sync_audio) spinLoop(&timer, wake_time); wake_time = new_wake_time; } } } inline fn blockOnVideo(timer: *Timer, wake_time: u64) u64 { // Use the OS scheduler to put the emulation thread to sleep const maybe_recalc_wake_time = sleep(timer, wake_time); // If sleep() determined we need to adjust our wake up time, do so // otherwise predict our next wake up time according to the frame period return if (maybe_recalc_wake_time) |recalc| recalc else wake_time + frame_period; } pub fn runBusyLoop(quit: *Atomic(bool), sched: *Scheduler, cpu: *Arm7tdmi) void { log.info("Emulation thread with video sync using busy loop", .{}); var timer = Timer.start() catch unreachable; var wake_time: u64 = frame_period; while (!quit.load(.SeqCst)) { runFrame(sched, cpu); spinLoop(&timer, wake_time); syncToAudio(cpu.bus.apu.stream, &cpu.bus.apu.is_buffer_full); // Update to the new wake time wake_time += frame_period; } } fn sleep(timer: *Timer, wake_time: u64) ?u64 { // const step = std.time.ns_per_ms * 10; // 10ms const timestamp = timer.read(); // ns_late is non zero if we are late. const ns_late = timestamp -| wake_time; // If we're more than a frame late, skip the rest of this loop // Recalculate what our new wake time should be so that we can // get "back on track" if (ns_late > frame_period) return timestamp + frame_period; const sleep_for = frame_period - ns_late; // // Employ several sleep calls in periods of 10ms // // By doing this the behaviour should average out to be // // more consistent // const loop_count = sleep_for / step; // How many groups of 10ms // var i: usize = 0; // while (i < loop_count) : (i += 1) std.time.sleep(step); std.time.sleep(sleep_for); return null; } fn spinLoop(timer: *Timer, wake_time: u64) void { while (true) if (timer.read() > wake_time) break; }