zba/src/core/emu.zig

200 lines
6.8 KiB
Zig
Raw Normal View History

2022-01-28 20:33:38 +00:00
const std = @import("std");
2022-05-23 15:05:57 +00:00
const SDL = @import("sdl2");
2022-01-28 20:33:38 +00:00
2022-01-07 23:49:58 +00:00
const Bus = @import("Bus.zig");
2021-12-29 21:09:00 +00:00
const Scheduler = @import("scheduler.zig").Scheduler;
2022-01-02 03:08:36 +00:00
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
2022-05-23 15:38:44 +00:00
const FpsTracker = @import("util.zig").FpsTracker;
2022-07-22 23:19:31 +00:00
const FilePaths = @import("util.zig").FilePaths;
2021-12-29 21:09:00 +00:00
2022-03-14 08:16:02 +00:00
const Timer = std.time.Timer;
const Thread = std.Thread;
2022-01-28 20:33:38 +00:00
const Atomic = std.atomic.Atomic;
2022-07-22 23:19:31 +00:00
const Allocator = std.mem.Allocator;
2022-03-14 08:16:02 +00:00
// TODO: Move these to a TOML File
const sync_audio = false; // Enable Audio Sync
const sync_video: RunKind = .LimitedFPS; // Configure Video Sync
pub const win_scale = 3; // 1x, 2x, 3x, etc. Window Scaling
pub const cpu_logging = false; // Enable detailed CPU logging
pub const allow_unhandled_io = true; // Only relevant in Debug Builds
2022-05-23 15:05:57 +00:00
// 228 Lines which consist of 308 dots (which are 4 cycles long)
const cycles_per_frame: u64 = 228 * (308 * 4); //280896
const clock_rate: u64 = 1 << 24; // 16.78MHz
// TODO: Don't truncate this, be more accurate w/ timing
// 59.6046447754ns (truncated to just 59ns)
2022-03-14 08:16:02 +00:00
const clock_period: u64 = std.time.ns_per_s / clock_rate;
const frame_period = (clock_period * cycles_per_frame);
// 59.7275005696Hz
pub const frame_rate = @intToFloat(f64, std.time.ns_per_s) /
((@intToFloat(f64, std.time.ns_per_s) / @intToFloat(f64, clock_rate)) * @intToFloat(f64, cycles_per_frame));
2022-03-14 08:16:02 +00:00
const log = std.log.scoped(.Emulation);
2021-12-29 21:09:00 +00:00
const RunKind = enum {
Unlimited,
UnlimitedFPS,
Limited,
LimitedFPS,
LimitedBusy,
};
pub fn run(quit: *Atomic(bool), fps: *FpsTracker, sched: *Scheduler, cpu: *Arm7tdmi) void {
if (sync_audio) log.info("Audio sync enabled", .{});
2022-05-23 15:05:57 +00:00
switch (sync_video) {
.Unlimited => runUnsynchronized(quit, sched, cpu, null),
.Limited => runSynchronized(quit, sched, cpu, null),
.UnlimitedFPS => runUnsynchronized(quit, sched, cpu, fps),
.LimitedFPS => runSynchronized(quit, sched, cpu, fps),
2022-04-14 02:21:25 +00:00
.LimitedBusy => runBusyLoop(quit, sched, cpu),
}
}
2022-04-14 02:21:25 +00:00
pub fn runFrame(sched: *Scheduler, cpu: *Arm7tdmi) void {
const frame_end = sched.tick + cycles_per_frame;
2022-07-21 14:25:49 +00:00
while (sched.tick < frame_end) {
if (!cpu.stepDmaTransfer()) {
if (cpu.isHalted()) {
// Fast-forward to next Event
sched.tick = sched.queue.peek().?.tick;
} else {
cpu.step();
}
2021-12-29 21:09:00 +00:00
}
2022-07-21 14:25:49 +00:00
if (sched.tick >= sched.nextTimestamp()) sched.handleEvent(cpu);
2021-12-29 21:09:00 +00:00
}
}
2022-01-28 20:33:38 +00:00
fn syncToAudio(stream: *SDL.SDL_AudioStream, is_buffer_full: *bool) void {
const sample_size = 2 * @sizeOf(u16);
const max_buf_size: c_int = 0x400;
2022-05-23 15:05:57 +00:00
// Determine whether the APU is busy right at this moment
var still_full: bool = SDL.SDL_AudioStreamAvailable(stream) > sample_size * if (is_buffer_full.*) max_buf_size >> 1 else max_buf_size;
defer is_buffer_full.* = still_full; // Update APU Busy status right before exiting scope
// If Busy is false, there's no need to sync here
if (!still_full) return;
while (true) {
still_full = SDL.SDL_AudioStreamAvailable(stream) > sample_size * max_buf_size >> 1;
if (!sync_audio or !still_full) break;
}
2022-05-23 15:05:57 +00:00
}
2022-05-23 15:38:44 +00:00
pub fn runUnsynchronized(quit: *Atomic(bool), sched: *Scheduler, cpu: *Arm7tdmi, fps: ?*FpsTracker) void {
2022-05-23 15:05:57 +00:00
log.info("Emulation thread w/out video sync", .{});
if (fps) |tracker| {
2022-05-23 15:05:57 +00:00
log.info("FPS Tracking Enabled", .{});
while (!quit.load(.SeqCst)) {
runFrame(sched, cpu);
syncToAudio(cpu.bus.apu.stream, &cpu.bus.apu.is_buffer_full);
2022-05-23 15:05:57 +00:00
2022-05-28 00:50:16 +00:00
tracker.tick();
}
} else {
2022-05-23 15:05:57 +00:00
while (!quit.load(.SeqCst)) {
runFrame(sched, cpu);
syncToAudio(cpu.bus.apu.stream, &cpu.bus.apu.is_buffer_full);
2022-05-23 15:05:57 +00:00
}
}
}
2022-05-23 15:38:44 +00:00
pub fn runSynchronized(quit: *Atomic(bool), sched: *Scheduler, cpu: *Arm7tdmi, fps: ?*FpsTracker) void {
2022-05-23 15:05:57 +00:00
log.info("Emulation thread w/ video sync", .{});
var timer = Timer.start() catch std.debug.panic("Failed to initialize std.timer.Timer", .{});
var wake_time: u64 = frame_period;
if (fps) |tracker| {
2022-05-23 15:05:57 +00:00
log.info("FPS Tracking Enabled", .{});
while (!quit.load(.SeqCst)) {
2022-05-23 15:05:57 +00:00
runFrame(sched, cpu);
const new_wake_time = blockOnVideo(&timer, wake_time);
2022-05-23 15:05:57 +00:00
// Spin to make up the difference of OS scheduler innacuracies
// If we happen to also be syncing to audio, we choose to spin on
// the amount of time needed for audio to catch up rather than
// our expected wake-up time
syncToAudio(cpu.bus.apu.stream, &cpu.bus.apu.is_buffer_full);
if (!sync_audio) spinLoop(&timer, wake_time);
2022-05-23 15:05:57 +00:00
wake_time = new_wake_time;
2022-05-28 00:50:16 +00:00
tracker.tick();
}
} else {
2022-05-23 15:05:57 +00:00
while (!quit.load(.SeqCst)) {
runFrame(sched, cpu);
const new_wake_time = blockOnVideo(&timer, wake_time);
2022-05-23 15:05:57 +00:00
// see above comment
syncToAudio(cpu.bus.apu.stream, &cpu.bus.apu.is_buffer_full);
if (!sync_audio) spinLoop(&timer, wake_time);
2022-05-23 15:05:57 +00:00
wake_time = new_wake_time;
}
}
}
2022-03-14 08:16:02 +00:00
inline fn blockOnVideo(timer: *Timer, wake_time: u64) u64 {
2022-05-23 15:05:57 +00:00
// Use the OS scheduler to put the emulation thread to sleep
const maybe_recalc_wake_time = sleep(timer, wake_time);
2022-05-23 15:05:57 +00:00
// If sleep() determined we need to adjust our wake up time, do so
// otherwise predict our next wake up time according to the frame period
return if (maybe_recalc_wake_time) |recalc| recalc else wake_time + frame_period;
}
2022-03-14 08:16:02 +00:00
2022-04-14 02:21:25 +00:00
pub fn runBusyLoop(quit: *Atomic(bool), sched: *Scheduler, cpu: *Arm7tdmi) void {
2022-05-23 15:05:57 +00:00
log.info("Emulation thread with video sync using busy loop", .{});
var timer = Timer.start() catch unreachable;
var wake_time: u64 = frame_period;
while (!quit.load(.SeqCst)) {
2022-04-14 02:21:25 +00:00
runFrame(sched, cpu);
spinLoop(&timer, wake_time);
syncToAudio(cpu.bus.apu.stream, &cpu.bus.apu.is_buffer_full);
// Update to the new wake time
wake_time += frame_period;
}
}
2022-05-23 15:05:57 +00:00
fn sleep(timer: *Timer, wake_time: u64) ?u64 {
// const step = std.time.ns_per_ms * 10; // 10ms
const timestamp = timer.read();
// ns_late is non zero if we are late.
2022-05-23 15:05:57 +00:00
const ns_late = timestamp -| wake_time;
// If we're more than a frame late, skip the rest of this loop
// Recalculate what our new wake time should be so that we can
// get "back on track"
2022-05-23 15:05:57 +00:00
if (ns_late > frame_period) return timestamp + frame_period;
const sleep_for = frame_period - ns_late;
// // Employ several sleep calls in periods of 10ms
// // By doing this the behaviour should average out to be
// // more consistent
// const loop_count = sleep_for / step; // How many groups of 10ms
// var i: usize = 0;
// while (i < loop_count) : (i += 1) std.time.sleep(step);
std.time.sleep(sleep_for);
2022-05-23 15:05:57 +00:00
return null;
}
2022-03-14 08:16:02 +00:00
fn spinLoop(timer: *Timer, wake_time: u64) void {
while (true) if (timer.read() > wake_time) break;
2022-01-28 20:33:38 +00:00
}