use crate::Cycle; use crate::GB_HEIGHT; use crate::GB_WIDTH; use bitfield::bitfield; const VRAM_SIZE: usize = 8192; const OAM_SIZE: usize = 160; const PPU_START_ADDRESS: usize = 0x8000; const WHITE: [u8; 4] = [0xFF, 0xFF, 0xFF, 0xFF]; const LIGHT_GRAY: [u8; 4] = [0xCC, 0xCC, 0xCC, 0xFF]; const DARK_GRAY: [u8; 4] = [0x77, 0x77, 0x77, 0xFF]; const BLACK: [u8; 4] = [0x00, 0x00, 0x00, 0x00]; #[derive(Debug, Clone)] pub struct Ppu { pub interrupt: Interrupt, pub lcd_control: LCDControl, pub monochrome: Monochrome, pub pos: ScreenPosition, pub vram: Box<[u8; VRAM_SIZE]>, pub oam: Box<[u8; OAM_SIZE]>, frame_buf: [u8; GB_WIDTH * GB_HEIGHT * 4], pub stat: LCDStatus, cycles: Cycle, } impl Ppu { pub fn read_byte(&self, addr: u16) -> u8 { self.vram[addr as usize - PPU_START_ADDRESS] } pub fn write_byte(&mut self, addr: u16, byte: u8) { self.vram[addr as usize - PPU_START_ADDRESS] = byte; } } impl Ppu { pub fn step(&mut self, cycles: Cycle) { self.cycles += cycles; match self.stat.mode() { Mode::OamScan => { if self.cycles >= 80.into() { self.cycles %= 80; self.stat.set_mode(Mode::Drawing); } } Mode::Drawing => { // This mode can take from 172 -> 289 Cycles // Remember: There's no guarantee that we start this mode // with self.cycles == 80, since we aren't going for an accurate // emulator // TODO: This 172 needs to be variable somehow? if self.cycles >= 172.into() { self.cycles %= 172; if self.stat.hblank_int() { self.interrupt.set_lcd_stat(true); } self.stat.set_mode(Mode::HBlank); self.draw_scanline(); } } Mode::HBlank => { // We've reached the end of a scanline if self.cycles >= 200.into() { self.cycles %= 200; self.pos.line_y += 1; let next_mode = if self.pos.line_y >= 144 { self.interrupt.set_vblank(true); if self.stat.vblank_int() { self.interrupt.set_lcd_stat(true); } Mode::VBlank } else { if self.stat.oam_int() { self.interrupt.set_lcd_stat(true); } Mode::OamScan }; self.stat.set_mode(next_mode); if self.stat.coincidence_int() { let are_equal = self.pos.line_y == self.pos.ly_compare; self.stat.set_coincidence(are_equal); } } } Mode::VBlank => { // We've reached the end of the screen if self.cycles >= 456.into() { self.cycles %= 456; self.pos.line_y += 1; if self.pos.line_y == 154 { self.pos.line_y = 0; if self.stat.oam_int() { self.interrupt.set_lcd_stat(true); } self.stat.set_mode(Mode::OamScan); } if self.stat.coincidence_int() { let are_equal = self.pos.line_y == self.pos.ly_compare; self.stat.set_coincidence(are_equal); } } } } } fn draw_scanline(&mut self) { let mut scanline: [u8; GB_WIDTH * 4] = [0; GB_WIDTH * 4]; let tile_map_addr = match self.lcd_control.bg_tile_map_addr() { TileMapAddress::X9800 => 0x9800, TileMapAddress::X9C00 => 0x9C00, }; let y_pos = self.pos.line_y as u16 + self.pos.scroll_y as u16; // let y_pos = self.pos.line_y as u16; // There are always 20 rows of tiles in the LCD Viewport // 160 / 20 = 8, so we can figure out the row of a tile with the following let tile_row: u16 = y_pos as u16 / 8; for (line_x, chunk) in scanline.chunks_mut(4).enumerate() { let x_pos = line_x as u16 + self.pos.scroll_x as u16; // let x_pos = line_x as u16; // There are always 18 columns of tiles in the LCD Viewport // 144 / 18 = 8, so we can figure out the column of a tile with the following let tile_column = x_pos / 8; // A tile is 8 x 8, and any given pixel in a tile comes from two bytes // so the size of a tile is (8 + 8) * 2 which is 32 let tile_addr = tile_map_addr + (tile_row * 32) as u16 + tile_column as u16; let tile_number = self.read_byte(tile_addr); let tile_data_addr = match self.lcd_control.tile_data_addr() { TileDataAddress::X8800 => (0x9000_i32 + (tile_number as i32 * 16)) as u16, TileDataAddress::X8000 => 0x8000 + (tile_number as u16 * 16), }; // Find the correct vertical line we're on let line = (y_pos % 8) * 2; // *2 since each vertical line takes up 2 bytes let higher = self.read_byte(tile_data_addr + line as u16); let lower = self.read_byte(tile_data_addr + line as u16 + 1); let pixels = Pixels::from_bytes(higher, lower); let bit = x_pos as usize % 8; let palette = self.monochrome.bg_palette; let shade = palette.colour(pixels.pixel(7 - bit)); // Flip Horizontally chunk.copy_from_slice(&shade.into_rgba()); } let i = (GB_WIDTH * 4) * self.pos.line_y as usize; self.frame_buf[i..(i + scanline.len())].copy_from_slice(&scanline); } pub fn copy_to_gui(&self, frame: &mut [u8]) { frame.copy_from_slice(&self.frame_buf); } } impl Default for Ppu { fn default() -> Self { Self { interrupt: Interrupt::default(), lcd_control: Default::default(), monochrome: Default::default(), pos: Default::default(), stat: Default::default(), vram: Box::new([0u8; VRAM_SIZE]), oam: Box::new([0u8; OAM_SIZE]), cycles: 0.into(), frame_buf: [0; GB_WIDTH * GB_HEIGHT * 4], } } } #[derive(Debug, Clone, Copy, Default)] pub struct Interrupt { _vblank: bool, _lcd_stat: bool, } impl Interrupt { pub fn vblank(&self) -> bool { self._vblank } pub fn set_vblank(&mut self, enabled: bool) { self._vblank = enabled; } pub fn lcd_stat(&self) -> bool { self._lcd_stat } pub fn set_lcd_stat(&mut self, enabled: bool) { self._lcd_stat = enabled; } } bitfield! { pub struct LCDStatus(u8); impl Debug; pub coincidence_int, set_coincidence_int: 6; pub oam_int, set_oam_int: 5; pub vblank_int, set_vblank_int: 4; pub hblank_int, set_hblank_int: 3; pub coincidence, set_coincidence: 2; // LYC == LY Flag from into Mode, _mode, set_mode: 1, 0; } impl LCDStatus { pub fn mode(&self) -> Mode { self._mode() } } impl Copy for LCDStatus {} impl Clone for LCDStatus { fn clone(&self) -> Self { *self } } impl Default for LCDStatus { fn default() -> Self { Self(0x80) // bit 7 is always 1 } } impl From for LCDStatus { fn from(byte: u8) -> Self { Self(byte) } } impl From for u8 { fn from(status: LCDStatus) -> Self { status.0 } } #[derive(Debug, Clone, Copy)] pub enum Mode { HBlank = 0, VBlank = 1, OamScan = 2, Drawing = 3, } impl From for Mode { fn from(byte: u8) -> Self { match byte { 0b00 => Self::HBlank, 0b01 => Self::VBlank, 0b10 => Self::OamScan, 0b11 => Self::Drawing, _ => unreachable!("{:#04X} is not a valid value for LCDMode", byte), } } } impl From for u8 { fn from(mode: Mode) -> Self { mode as Self } } impl Default for Mode { fn default() -> Self { Self::HBlank } } #[derive(Debug, Clone, Copy, Default)] pub struct ScreenPosition { pub scroll_y: u8, pub scroll_x: u8, pub line_y: u8, pub ly_compare: u8, pub window_y: u8, pub window_x: u8, } bitfield! { pub struct LCDControl(u8); impl Debug; lcd_enabled, set_lcd_enabled: 7; from into TileMapAddress, win_tile_map_addr, set_win_tile_map_addr: 6, 6; window_enabled, set_window_enabled: 5; from into TileDataAddress, tile_data_addr, set_tile_data_addr: 4, 4; from into TileMapAddress, bg_tile_map_addr, set_bg_tile_map_addr: 3, 3; from into ObjectSize, obg_size, set_obj_size: 2, 2; obj_enabled, set_obj_enabled: 1; bg_win_enabled, set_bg_win_enabled: 0; } impl Copy for LCDControl {} impl Clone for LCDControl { fn clone(&self) -> Self { *self } } impl Default for LCDControl { fn default() -> Self { Self(0) } } impl From for LCDControl { fn from(byte: u8) -> Self { Self(byte) } } impl From for u8 { fn from(ctrl: LCDControl) -> Self { ctrl.0 } } #[derive(Debug, Clone, Copy)] enum TileMapAddress { X9800 = 0, X9C00 = 1, } impl From for TileMapAddress { fn from(byte: u8) -> Self { match byte { 0b00 => Self::X9800, 0b01 => Self::X9C00, _ => unreachable!("{:#04X} is not a valid value for TileMapRegister", byte), } } } impl From for u8 { fn from(reg: TileMapAddress) -> Self { reg as Self } } impl Default for TileMapAddress { fn default() -> Self { Self::X9800 } } #[derive(Debug, Clone, Copy)] enum TileDataAddress { X8800 = 0, X8000 = 1, } impl From for TileDataAddress { fn from(byte: u8) -> Self { match byte { 0b00 => Self::X8800, 0b01 => Self::X8000, _ => unreachable!("{:#04X} is not a valid value for TileDataRegister", byte), } } } impl From for u8 { fn from(reg: TileDataAddress) -> Self { reg as Self } } impl Default for TileDataAddress { fn default() -> Self { Self::X8800 } } #[derive(Debug, Clone, Copy)] enum ObjectSize { EightByEight = 0, EightBySixteen = 1, } impl From for ObjectSize { fn from(byte: u8) -> Self { match byte { 0b00 => Self::EightByEight, 0b01 => Self::EightBySixteen, _ => unreachable!("{:#04X} is not a valid value for ObjSize", byte), } } } impl From for u8 { fn from(size: ObjectSize) -> Self { size as Self } } impl Default for ObjectSize { fn default() -> Self { Self::EightByEight } } #[derive(Debug, Clone, Copy)] pub enum GrayShade { White = 0, LightGray = 1, DarkGray = 2, Black = 3, } impl GrayShade { pub fn into_rgba(self) -> [u8; 4] { match self { GrayShade::White => WHITE, GrayShade::LightGray => LIGHT_GRAY, GrayShade::DarkGray => DARK_GRAY, GrayShade::Black => BLACK, } } } impl Default for GrayShade { fn default() -> Self { Self::White } } impl From for GrayShade { fn from(byte: u8) -> Self { match byte { 0b00 => GrayShade::White, 0b01 => GrayShade::LightGray, 0b10 => GrayShade::DarkGray, 0b11 => GrayShade::Black, _ => unreachable!("{:#04X} is not a valid value for GrayShade", byte), } } } impl From for u8 { fn from(shade: GrayShade) -> Self { shade as Self } } #[derive(Debug, Clone, Copy, Default)] pub struct Monochrome { pub bg_palette: BackgroundPalette, pub obj_palette_0: ObjectPalette, pub obj_palette_1: ObjectPalette, } bitfield! { pub struct BackgroundPalette(u8); impl Debug; pub from into GrayShade, i3_colour, set_i3_colour: 7, 6; pub from into GrayShade, i2_colour, set_i2_colour: 5, 4; pub from into GrayShade, i1_colour, set_i1_colour: 3, 2; pub from into GrayShade, i0_colour, set_i0_colour: 1, 0; } impl BackgroundPalette { pub fn colour(&self, id: u8) -> GrayShade { match id { 0b00 => self.i0_colour(), 0b01 => self.i1_colour(), 0b10 => self.i2_colour(), 0b11 => self.i3_colour(), _ => unreachable!("{:#04X} is not a valid colour id", id), } } } impl Copy for BackgroundPalette {} impl Clone for BackgroundPalette { fn clone(&self) -> Self { *self } } impl Default for BackgroundPalette { fn default() -> Self { Self(0) } } impl From for BackgroundPalette { fn from(byte: u8) -> Self { Self(byte) } } impl From for u8 { fn from(palette: BackgroundPalette) -> Self { palette.0 } } bitfield! { pub struct ObjectPalette(u8); impl Debug; pub from into GrayShade, i3_colour, set_i3_colour: 7, 6; pub from into GrayShade, i2_colour, set_i2_colour: 5, 4; pub from into GrayShade, i1_colour, set_i1_colour: 3, 2; } impl Copy for ObjectPalette {} impl Clone for ObjectPalette { fn clone(&self) -> Self { *self } } impl Default for ObjectPalette { fn default() -> Self { Self(0) } } impl From for ObjectPalette { fn from(byte: u8) -> Self { Self(byte) } } impl From for u8 { fn from(palette: ObjectPalette) -> Self { palette.0 } } struct Pixels([u8; 2]); impl Pixels { pub fn from_bytes(higher: u8, lower: u8) -> Self { Self([higher, lower]) } pub fn pixel(&self, bit: usize) -> u8 { let higher = self.0[0] >> bit; let lower = self.0[1] >> bit; (higher & 0x01) << 1 | lower & 0x01 } }